US 2002/0100017 A1l

author of the configuration file to ensure that the assembly
targeted by the redirect can be found. In the case of the
application configuration file, the application author/de-
ployer may choose to package the files (e.g., binaries) for the
target assembly with the application, or alternatively provide
information (sometimes referred to as a “codebase™) in the
configuration file to tell the operating system where the files
can be found. Another option is to install the redirected
version of the assembly on the machine. Note that for
privatized assemblies, e.g., in the second alternative mode,
by attempting to locate the referenced assembly by consis-
tently looking in the application directory, an application
author may simply copy newer privatized assemblies into
the application directory, and know that the newer assem-
blies will be automatically used by the application.

[0074] As generally described above, a second alternative
mode is provided, in which the order of applying configu-
rations is different, a safe mode is available for bypassing
publisher configuration, and an administrator configuration
may be present and if so is interpreted to override other
configuration binding data. More particularly, in this second
mode, the first stage of policy resolution comprises resolv-
ing any application policy. As represented in FIG. 3B by
circled numerals four (4) and five (5), if an application
policy exists, a binding mechanism 305 reads and interprets
the application policy 216. To this end, before a bind to the
assembly can proceed, the application policy file (if any) is
accessed, and analyzed. As described above, if not bypassed
via the safe mode, any publisher configuration is next
applied, as generally represented in FIG. 3B by the arrows
labeled six (6) and seven (7).

[0075] In this second mode, a third stage in the bind
configuration resolution process is administrator configura-
tion, represented in FIG. 3B by the arrows labeled eight (8)
and nine (9). Administrator configuration is the strongest
form of configuration, as it makes the final determination as
to which version will be bound, and cannot be bypassed. To
provide administrator configuration, the administrator con-
figuration file 224 (FIG. 2B), ¢.g., named “machine.config,”
has the same schema as the configuration files used in the
two previous stages of configuration resolution. Adminis-
trator configuration affects assembly binds that occur to any
application on the system.

[0076] Once the configurations have been handled for a
given assembly to which an application wants to bind, only
one version of that assembly remains. This information may
be cached in the activation context 302 (the arrow labeled
eight (8) in FIG. 3A or ten (10) in FIG. 3B) and may be
persisted (e.g., in the first alternative mode) so that it need
not be computed again, unless and until a configuration
change occurs. Note that in the second alternative mode, the
application context is not persisted, although it is feasible to
do so.

[0077] By way of example, FIG. 4 represents some of the
information that may be maintained in an activation context,
e.g., an activation context 302 constructed for the applica-
tion 200,. In FIG. 4, the activation context 302 includes a
table of contents 400 (e.g., providing offsets to its record-
sets) for rapid access to the data therein.

[0078] For persisted activation contexts, because the con-
figurations that may change the dependency information
may change over time, (e.g., publisher configurations may

Jul. 25, 2002

be wrapped as assemblies which can be versioned, new
application configurations may be downloaded and so on),
in the first alternative mode the activation context 302
includes a cache coherency section 402. The cache coher-
ency section is used to detect whether a saved activation
context 302 is valid, wherein when the activation context
302 is not coherent with current configuration, it is recom-
puted. A section per API that implements version-specific
binding is maintained.

[0079] To map the application’s requests to the proper
assembly versions, the activation context 302 includes a
DLL redirector section 404 and an object class redirector
section 406. The DLL redirector section 404 includes a
record or the like for each DLL dependency that includes
fields (e.g., 408, and 409,) that relate the DLL name used by
an application to the exact pathname of the version deter-
mined following the above-described configuration-resolu-
tion process. The object class redirector section 406 includes
a record or the like for each object class (e.g., Windows®
object class) on which an application depends, wherein each
record includes fields (e.g., 412, 413,, and 414,) that relate
the object class name used by an application to the DLL file
it is in and a version specific name. Note that the fields are
arranged in a manner that optimizes lookup, e.g., the appli-
cation-provided request data corresponds to the search key,
and the records may be arranged in any way (e.g., alpha-
betically, by frequency, linearly, binary or so on) to speed
searches.

[0080] Via the activation context, during runtime as
described below, an application’s requests for assemblies
can be efficiently satisfied with the correct version of that
assembly. If a given assembly is not found in the activation
context data, the default assembly is used. To summarize,
when an application first runs, the activation context built
from the manifest data is cached, whereby the global,
version-independent named objects requested by an appli-
cation are mapped to version-dependent named objects as
specified in the manifest and redirected by any configura-
tions. As the application executes and requests a named
object via one of the activation APIs, the version-indepen-
dent named objects are applied in a version-specific fashion
by accessing the application context, whereby the applica-
tion gets the correct version.

[0081] FIG. 5 represents the general operation during
runtime, e.g., in the first alternative mode, wherein an
application 200 requests via one of a set of application APIs
(e.g., 300,) a version-independent assembly (represented via
the arrow labeled with circled numeral one (1)). Application
APIS include those directed to loading DLLs, COM server
loading, COM interface proxy stub metadata, type libraries
for COM, program identifiers for COM, object (e.g., Win-
dows®) classes, kernel global objects (e.g., semaphores,
mutexes, events, shared memory, COM categories), appli-
cation settings and database (registry) connections.

[0082] When the application API 300, receive the request,
the request data (e.g., the application provided name) is
passed to a runtime version-matching mechanism 500 (the
arrow labeled two (,)). The runtime version-matching
mechanism 500 locates the correct activation context 302
(from among a store 502 or the like of those maintained) for
the calling application 200, and accesses the records therein
to determine the correct version of the requested assembly



